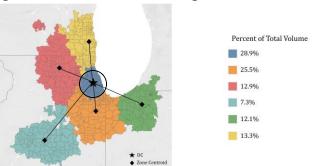


Delivery Zone Definition using K-Medoids and Integer Programming

Rachel Thomas (Team Leader), Zayna Abu-Safe, Luke Smith, Bennett Foret, Trent Sawyer Reid Nelson (Manager II, E&T), Brett Phillippe (Sr. Logistics Engineer)

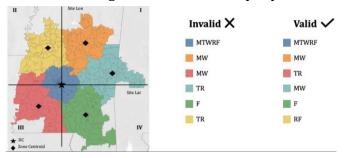
J.B. Hunt Final Mile Delivery Zones


J.B. Hunt is a transportation logistics company that offers a range of shipment and carrier solutions. Its Final Mile business unit defines delivery zones for its customers to reduce weekly mileage. Though it effectively reduces miles per stop by 26% on average, the manual process of creating zones is time-consuming and does not guarantee the best route mileage.

Assigning Zip Codes to Zones

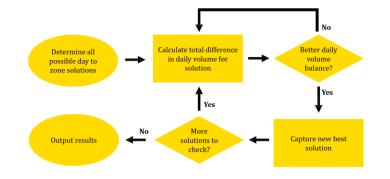
We use the CH stopping rule to determine the how many zones to create and assign high-volume Zip Codes near the DC to a predefined zone. We set its size based on the volume distributed to the other zones, which are created by assigning the remaining Zip Codes using K-Medoids with volume-weighted centroid

balancing.

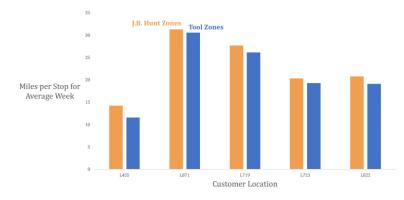

Optimizing Day to Zone Assignments

We use an integer program to assign delivery days to zones. The objective is to minimize the sum of the differences in volume between each pair of delivery days.

Sets Set J of delivery days (input by user, could be 5 or 6) Set C of clusters	Objective $Minimize \sum_{jj'} Z_{jj'}$
Parameters $V_c = \text{total volume for cluster c}$ $D = \text{user input for setting the minimum number of days per zone}$	Constraints Each cluster must be assigned to at least one delivery da
	Predefined Zone (1) is assigned every delivery day
Decision Variables	Invalid day constraints
$\mathbf{x}_{cj} = \begin{cases} 1 \text{ if cluster c is assigned to delivery day } j \\ 0 \text{ otherwise} \end{cases}$	Non-central zones must not be assigned all days Percentage-based preset number of days
$S_j = \text{total volume assigned to day j}$ Z_{jj} , = absolute difference between S_j and S_j ,	Binary constraints


Geographic Component of Algorithm

Our algorithm considers a factor for geographic location of zones to ensure mileage is reduced by enforcing additional constraints. We project a Cartesian coordinate plane onto the customer area and add constraints that zones lying in different quadrants are not assigned the same delivery days.


Optimization by Complete Enumeration

To solve this, we use complete enumeration to assign delivery days to zones such that daily volume is balanced throughout the week.

Impact and Results

Our results show a significant decrease in miles per stop compared to J.B. Hunt delivery zones, with an average reduction of 8%. Also, our tool reduces the time of creating zones from 10 hours to 4 minutes on average.

