Streamlining the Parcel Rating Process With Customer Data Automation

The purpose of this Capstone project is to provide Green Mountain Technology with an automated tool for processing customer data files. This was accomplished by creating a Python-based decision support tool and a non-linear optimization model to be used for parcel rating and package sizing respectively. The key results of this project are a reduction in the time spent analyzing customer data and a reduction in overall cost from additional handling surcharges.

Green Mountain Technology is a parcel auditing and consulting company located in Memphis, Tennessee. Their customers are large e-commerce retailers who ship a minimum of four million parcels per year. This project focuses on Green Mountain Technology's consulting process.

Technology's Solutions Engineers and shows the general flow of the rate generation process used for customer data within the overall consulting process.

Industry Partner: Green Mountain Technology Faculty Advisor: Dr. Chase Rainwater

Purpose

Background

Team Members: Alec Hewitt, Blake Yates, Michael Harrell, Ruby George, Vincent Chang

Objective:

Minimize Cost Associated with Additional Handling and Oversized Surcharges

Key Constraints:

New Package Volume \geq Tolerance * Original Package Volume New Package Volume \leq Original Package Volume New Package Dimensions > Original Package Dimensions - 2 New Dimensions < Original Package Dimensions + 2 New Length \geq New Width \geq New Height New Dimensions \leq Oversized Limits

New Dimensions \leq Additional Handling Limits

Optimization Results

Tolerance Placed on Volume Constraint	Cost	Number of Additional Handling Surchargs	Number of Oversized Surcharges	Cost Reduction
100%	4180.5	183	19	2.21%
99%	1566	36	12	63.37%
98%	1381.5	29	11	67.68%
97%	1264.5	27	10	70.42%
96%	864	24	6	79.79%
95%	774	24	5	81.89%
-	_	_	-	-
79%	414	24	1	90.32%
0%	414	24	1	90.32%

Total Cost Reduction

100% 80%

Tolerance

60%

Green

Optimization

				100%	U
				80%	uctic
				60%	Redu
				40%	ost
				20%	nt C
				0%	erce
40)%	20%	0%		Ð

- -Reduction