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Nestlé USA’s Category Advisorships

Nestlé USA is a segment of Nestlé, the world’s largest food and beverage company. Nestlé
USA provides a variety of food and beverage products such as frozen pizzas, chocolate
chips, and coffee creamers to retailers across the United States. Nestlé USA’s office in
Rogers, Arkansas, focuses on its Walmart and Sam’s Club operations. Nestlé USA has four
category advisorships with Walmart: Baking, Chilled Creamers, Frozen Entertaining, and
Frozen Meals. This means that Nestlé USA has been chosen by Walmart to offer
professional advice on product assortment for these categories, including products
produced by Nestlé USA’s competitors.
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Nestlé USA’s Current Forecasting System

Amie Beckwith, Suelly Samudio Ortega, Joseph Goodman

Nestle

Seasonal ARIMA (Auto Regressive Integrated Moving Average)

Analyzing the Forecasting Horizon

To improve Nestlé USA’s forecasting system, we first researched potential forecasting
techniques. Given the highly seasonal nature of our data, we knew that we needed an
approach that took seasonality into account. We narrowed down our focus to the three
best options: seasonal ARIMA models, ARIMA models with regressors from Fourier
series, and Prophet. Our analysis showed that seasonal ARIMA was the best option.
These models incorporate binary holiday variables and detect growth and decline over
time. Our analysis shows that the models offer a clear improvement to MAPE from the
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Currently, Nestlé USA simply uses last year’s sales as an estimate for this year’s sales. This
system has proven to be inefficient as it is entirely backwards looking. Holiday shifts from
year to year and category growth or decline year over year are large contributors to error
in the current system.
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Dynamic Forecasting Model

Using the knowledge, we gained from our research on the seasonal ARIMA model, we
were able to implement the ARIMA modeling process in a dynamic way so that it can be
applied to any level of data input into the model.
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The model is self adjusting based on the data and parameters provided to it, this is done by
use of both the “auto.arima” and “forecast” functions in R.. This function takes time series
data and automatically fits an ARIMA model (including seasonal models).

To measure forecast accuracy at different horizons, we forecasted the entire year of
2019 using different horizon lengths. The graphs show average MAPE values for each
forecasting horizon length as well as a solid horizontal line to represent the current
system’s MAPE for 2019. We concluded that the new system should not forecast past
10 weeks in advance.
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R Shiny Forecasting Interface

To add ease to the forecasting process, we also created a user interface for our
forecasting models using R Shiny. This interface allows the user to make custom
selections and press a button to output the desired forecast.
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