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Modeling
Data was examined from two different perspectives, at the individual driver
level and at the account level, taking averages for miles and stops across the number
of drivers for the given week. Multiple Linear Regression was the preferred

modeling techniqgue used in Minitab 18. Inaccurate unit amounts for mileage pay,
Abstract weekly pay variance due to nature of activity-based pay, and increasing average Decision Support Tool
The trucking industry, as a whole, has a very high turnover rate for drivers. weekly pay by number of weeks worked led us to examine driver pay from the The decision support tool has six functional areas. The first allows the user to
The turnover rate can vary wildly from 40% to as high as 200% on an annualize account level. give the tool inputs for the prediction. The inputs are auto-populated from the data
basis. When bidding a contract for potential customers, estimating the cost of Average Weekly Pay by Weeks Employed set in the tool. so if the user loads a different dataset, the tool will not need to be
driver pay can be very difficult because of the volatility in the market. Currently, manually updated. The inputs also remain on screen by design, so the user can
J.B. Hunt relies heavily on industry experts to estimate these Costs. reference the inputs when evaluating the prediction. The validation section of the
Our team decided to create a decision support tool to help ground these tool is created by using J.B. Hunt’s data to create a histogram displaying driver
estimates In two sets of data. The first set, J.B. Hunt’s internal data, was analyzed pay data for the selected region. For validation, our code retrieves information
using many different data analysis techniques to determine an appropriate online from the Bureau of Labor Statistics, then processes the data to create a chart
regression model for predicting driver pay. The second set, from the Bureau of . 1r34se7ssnunnusBrEEDuRDUS displaying the historical industry average for the selected area. The results section
Labor Statistics, Is automatically collected and used to validate each prediction. Assumptions Is created by computing the predicted pay from our data analysis. The data
We used VBA in Excel to collect and gather all the data necessary for the data Weekly account data was analyzed and separated manually through the use of analysis produced an equation we use along with the user inputs. A range for the
analysis to be done automatically. The program was designed to be easy to pivot tables In excel. Rows were tabularized with Account number, driver class, orediction is given, and the user can control the width of the range. We recognize
Interpret for future development and flexible enough to allow for new datasets to region, channel, industry, and pay end date as the unique key. Through backwards there will be outside factors affecting the accuracy of the prediction the user wants
be added without needing to re-write the program. Finally, the end-user Is elimination, binary variables categorizing activities performed by account drivers: to consider in the prediction, so we provided the adjustments section to allow the
presented with a summary of the analyses performed, so he or she Is better were eliminated based on a model fit criterion ot alpha = 0.01. Binary variables with | | ;ser to increase or decrease the prediction by a certain percentage. Finally, we
equipped to make an estimate. negative coefficients were excluded from the final model, as they did not reflect an display the accuracy of the ranged predictions based on the data within the tool.
Increase in pay for added driver activity. Each driver is used as inputs for our prediction, then each prediction is compared
Preliminary Analysis Variables to the actual amount paid. The equation given below is used to calculate the
Model X, = Average Weekly Miles, X, = Average Weekly Stops, X3 = Job Family Class accuracy dISpIayed

Pareto Analysis of Truck Driver Retention Variables

X, = Customer Region, X; = Customer Channel, X, = Customer Industry
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